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Droplet motion is a free boundary problem with contact lines. 
Droplet shape is a graph h, but h has finite support. 

Support is unknown and can depend on time.

Setting: 
Newtonian liquids 
Viscous (Re=0) 
partial wetting
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⌦ = {(x, z) : 0 < z < h(t, x)}

Numerics of contact line motion

for thin films

Dirk Peschka

⇤

⇤
Weierstrass Insitute, Mohrenstr. 39, 10117 Berlin, Germany

(e-mail: dirk.peschka@wias-berlin.de)

Abstract: We introduce an algorithm for the explicit treatment of contact line motion for thin-
film problems and compare its solutions with exact source-type solutions and their asymptotic
behavior near the contact line. The algorithm uses a variational formulation and avoids dealing
with singularities near the contact line.

Keywords: thin fluid films, free boundary problems, numerical algorithms, self-similar solutions

1. MODEL AND ALGORITHM

The spreading of a viscous liquid droplet of height h(t, x)
over a solid substrate by surface tension is governed by a
partial di↵erential equation of the type

ḣ+ (|h|nh
xxx

)
x

= 0, (1a)
h(0, x) = h0(x), (1b)

where we use the notation ḣ = h
t

for time derivatives.
For illustration of the geometry see fig. 1. The mobility
exponent n depends on the type of friction with the
substrate, where usually one has 0 < n  3 as it is
discussed by Eggers (2004). Additionally we assume that
the initial support is an interval (x�, x+) := supph0,
where x± evolve with time. As boundary conditions we
consider a zero contact angle and specify a kinematic
condition, so that for t > 0

h
x

(t, x±) = 0, (1c)

ẋ± = lim
x!x±

�|h|n�1 h
xxx

�
. (1d)

Solutions of (1) conserve the volume v(t) =
R
h dx ⌘ v(0)

and it is known that the support moves with finite speed,
see Hulshof et al. (1998). For n > 1 the kinematic condition
(1d) implies h

xxx

! 1 as x ! x± for the contact line to
move with a finite velocity. This singularity with the fact
that h ! 0 as x ! x± is one major di�culty in using (1d)
to evaluate the velocity of the boundary.

Fig. 1. droplet parametrized by h on a solid substate

The thin-film problem is known already for quite some
time, i.e. existence of weak solutions was shown by Bernis
? Financial support by DFG in the MATHEON project C10 and by
Einstein Center for Mathematics in Berlin ECMath in project OT1

and Friedman (1990). In the context the free-boundary
problem above existence of solutions in weighted Hölder
spaces was shown by Giacomelli and Knüpfer (2010).
In general one can not guarantee that after starting
with an interval (x�, x+) the solution will always stay
strictly positive inside (x�(t), x+(t)) and no topological
transitions occur.

Numerical algorithms for this problem mainly rely on
global solutions for this problem, i.e. algorithms which
solve for h(t, x) for x 2 R and preserve non-negativity
outside (x�, x+) in a sense, see e.g. the works by Zhornit-
skaya and Bertozzi (1999); Grün and Rumpf (2000). Here
we go a di↵erent route and do not look for global solutions
but rather seek solutions of the free-boundary problem (1).
Such an approach is certainly not feasible to treat topolog-
ical transitions. Our proposed method is to first solve (1a)
using the space and time-discrete variational formulation
using finite elements just on the support (x�, x+). Here
we seek piecewise linear functions ḣ,⇡ that satisfy

Z
x+

x�

( ḣ�+ |h|n⇡
x

�
x

) dx = 0, (2a)

Z
x+

x�

(⇡'� ⌧ ḣ
x

'
x

) dx =

Z
x+

x�

h
x

'
x

dx, (2b)

for all piecewise linear test functions �,' defined on
an decomposition of the interval (x�, x+). No essential
boundary conditions are imposed on solutions or test
functions. Note that all appearances of h and x± are
treated explicitly. In order to arrive at (2) we introduced a
new variable ⇡ = �h

xx

and split (1a) in two second order
equations. Furthermore we used (1c) the zero contact angle
h
x

= 0 and a no-flux condition |h|nh
xxx

= 0 at x± as
natural boundary conditions. Only in (2b) defining ⇡ we
replaced h by the more implicit expression h + ⌧ ḣ where
⌧ = tk+1�tk to obtain a stable method similar to a (semi)-
implicit Euler method. For any given h defined on (x�, x+)
this gives us the time-derivative ḣ in the Eulerian reference
frame.

However, we need another method to compute x± and
h at time tk+1 from the corresponding data at time tk.
Here we use the fact that in a reference frame moving

z
�

⌦

� = {(x, z) : z = h(t, x) > 0}
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Stokes flow with free boundary

in ⌦

on �

at x±

�rp+ µr2u = 0,

r · u = 0,

�
�pI+ 2µD(u)

�
n = �n,

�
u� v�

�
· n = 0,

|rh| = tan ✓,
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Helmholtz (1869), Rayleigh (1873),…,Onsager (1929)

Modeling
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Stokes via Helmholtz-Rayleigh variational principle

E =

Z

�
�

D(u,v) =

Z

⌦

µ

2
D(u) : D(v) +

Z

{z=0}
��1u · v

dE

dt
= hdi↵E,ui = �D(u,u)  0

Seek u so that D(u,v) = �hdi↵E,vi for all v.
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Thin-film limit in a nutshell:

Z
� =

Z
�

p
1 + |rh|2 dx ⇡

Z
�

�
1 + 1

2 |rh|2
�
dx

Conservation of mass + kinematic condition:

D =

Z
D(u) : D(v) +

Z

z=0
�

�1
uv

⇡
Z Z h

0
(@zu)(@zv)dz dx+

Z

z=0
�

�1
uv

=

Z Z h

0
(�@zzu)vdz dx+

Z
(@zu)vdx|h0 + �

�1
uv|z=0

hdi↵E,vi =
Z

rhrḣvdx

= �
Z

rh ·r
 
r ·
Z h

0
vdz

!
dx

=

Z Z h

0
(�r�h)vdz dx

D(u,v) = �hdi↵E,vi

ḣ+r ·
Z h

0
u dz = 0

Note:

˙h = @th
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Existence weak solutions: Bernis & Friedmann (1990) 
Positivitiy-preserving schemes: Zhornitskaya and Bertozzi (1999); Grün and Rumpf (2000) 
Existence of classical solution in weighted Sobolev spaces: Giacomelli & Knüpfer (2010), Bertsch et al. (2005) 

For given h(0, x) seek h(t, x) such that
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1. MODEL AND ALGORITHM

The spreading of a viscous liquid droplet of height h(t, x)
over a solid substrate by surface tension is governed by a
partial di↵erential equation of the type

ḣ+ (|h|nh
xxx

)
x

= 0, (1a)
h(0, x) = h0(x), (1b)

where we use the notation ḣ = h
t

for time derivatives.
For illustration of the geometry see fig. 1. The mobility
exponent n depends on the type of friction with the
substrate, where usually one has 0 < n  3 as it is
discussed by Eggers (2004). Additionally we assume that
the initial support is an interval (x�, x+) := supph0,
where x± evolve with time. As boundary conditions we
consider a zero contact angle and specify a kinematic
condition, so that for t > 0

h
x

(t, x±) = 0, (1c)

ẋ± = lim
x!x±

�|h|n�1 h
xxx

�
. (1d)

Solutions of (1) conserve the volume v(t) =
R
h dx ⌘ v(0)

and it is known that the support moves with finite speed,
see Hulshof et al. (1998). For n > 1 the kinematic condition
(1d) implies h

xxx

! 1 as x ! x± for the contact line to
move with a finite velocity. This singularity with the fact
that h ! 0 as x ! x± is one major di�culty in using (1d)
to evaluate the velocity of the boundary.

Fig. 1. droplet parametrized by h on a solid substate

The thin-film problem is known already for quite some
time, i.e. existence of weak solutions was shown by Bernis
? Financial support by DFG in the MATHEON project C10 and by
Einstein Center for Mathematics in Berlin ECMath in project OT1

and Friedman (1990). In the context the free-boundary
problem above existence of solutions in weighted Hölder
spaces was shown by Giacomelli and Knüpfer (2010).
In general one can not guarantee that after starting
with an interval (x�, x+) the solution will always stay
strictly positive inside (x�(t), x+(t)) and no topological
transitions occur.

Numerical algorithms for this problem mainly rely on
global solutions for this problem, i.e. algorithms which
solve for h(t, x) for x 2 R and preserve non-negativity
outside (x�, x+) in a sense, see e.g. the works by Zhornit-
skaya and Bertozzi (1999); Grün and Rumpf (2000). Here
we go a di↵erent route and do not look for global solutions
but rather seek solutions of the free-boundary problem (1).
Such an approach is certainly not feasible to treat topolog-
ical transitions. Our proposed method is to first solve (1a)
using the space and time-discrete variational formulation
using finite elements just on the support (x�, x+). Here
we seek piecewise linear functions ḣ,⇡ that satisfy

Z
x+

x�

( ḣ�+ |h|n⇡
x

�
x

) dx = 0, (2a)

Z
x+

x�

(⇡'� ⌧ ḣ
x

'
x

) dx =

Z
x+

x�

h
x

'
x

dx, (2b)

for all piecewise linear test functions �,' defined on
an decomposition of the interval (x�, x+). No essential
boundary conditions are imposed on solutions or test
functions. Note that all appearances of h and x± are
treated explicitly. In order to arrive at (2) we introduced a
new variable ⇡ = �h

xx

and split (1a) in two second order
equations. Furthermore we used (1c) the zero contact angle
h
x

= 0 and a no-flux condition |h|nh
xxx

= 0 at x± as
natural boundary conditions. Only in (2b) defining ⇡ we
replaced h by the more implicit expression h + ⌧ ḣ where
⌧ = tk+1�tk to obtain a stable method similar to a (semi)-
implicit Euler method. For any given h defined on (x�, x+)
this gives us the time-derivative ḣ in the Eulerian reference
frame.

However, we need another method to compute x± and
h at time tk+1 from the corresponding data at time tk.
Here we use the fact that in a reference frame moving

z

For given seek such that

where

|h
x

(t, x±)| = tan ✓

ẋ± = lim
x!x±

⇣
m

h

⇡

x

⌘

h(t, x±(t)) ⌘ 0where

ḣ�r ·
�
m(h)r⇡

�
= 0

⇡ =
�E

�h
= ��h, m(h) = |h|n

mailto:peschka@wias-berlin.de


2. Droplets on solid planar surfaces
Contact angle: regularization vs free boundary



/  41www.wias-berlin.de · Providence · March 20-25, 2017 · peschka@wias-berlin.de

Regularization vs free boundary problem

12

Driving energy E and dissipation D

D(ḣ) =

Z
m(h)(r⇡)2

Huh, Scriven. J. Colloid. Interf. Sci. (1971)

m(h) = |h|n
Why is sliding motion singular for no-slip m(h) = |h|3?

˙

h+r · j = 0, j = �mr⇡ = hv

results in

D =

Z
j2

m

=

Z
h

2�n|v|2

so that near a sliding contact line with velocity v0 and slope ↵ we have

D ⇡
Z

x�+�

x�

�
↵(x� x�)

�2�n

v

2
0 +

Z
x+

�

...

E(h) =

Z
1
2 |rh|2dx+ V (h)

mailto:peschka@wias-berlin.de
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V (h) = �µ({x : h(x) > 0}) 1d
= �|x+ � x�|

Driving energy E and dissipation D

…with regularization (disjoining pressure)

V (h) = �

Z
�(h" ) dx

…or without

D(ḣ) =

Z
m(h)(r⇡)2E(h) =

Z
1
2 |rh|2dx+ V (h)

s

s

��
lim

it

mailto:peschka@wias-berlin.de
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Optimize size of support vs 
gradients of the solution  
leads to contact angle 

but also drives motion  
and instabilities

E(h) =

Z
1

2
|rh|2dx+ V (h), V (h) = �|x+ � x�|s

mailto:peschka@wias-berlin.de


P2 FEM with (heuristic) spatial adaptivity

dewetting instability with mobility n=2 Plateau-Rayleigh instability with n=3

Typical instabilities on solid surfaces
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Z
x+

x�

( ḣ�+ |h|n⇡
x

�

x

) dx = 0

Z
x+

x�

(⇡'� ⌧ ḣ

x

'

x

) dx =

Z
x+

x�

h

x

'

x

dx� h

x

�|x+

x�

2. weak formulation (discrete in space using linear FEM)

ḣ� (|h|n⇡
x

)
x

= 0

⇡ =
�E

�h
= �h

xx

1. original PDE

mailto:peschka@wias-berlin.de
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Note on the handling of time-derivatives

 t0(t, x) = x�(t) + ⇠(x)
�
x+(t)� x�(t)

�

⇠(x) =
x� x�(t0)

x+(t0)� x�(t0)

3. define transformation

H(t, x) = h
�
t, t0(t, x)

�
4. pull-back of                               gives            h by  t0

 t0(t, ·) : (x�(t0), x+(t0)) ! (x�(t), x+(t))

• h(t+ ⌧, ·) = h(t, ·) + ⌧ ˙h makes no sense

• ALE (arbitrary Lagrangian-Eulerian) transformation as post-processing

mailto:peschka@wias-berlin.de
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Ḣ = ḣ+  ̇h
x

5. time derivative uniquely decomposes

ḣ(x) 7!

0

@
 ̇(x�)
Ḣ

 ̇(x+)

1

A

xk+1 = xk + ⌧ ̇(xk),

hk+1 = hk + ⌧Ḣ,

6. update according to time-derivatives

Ḣ(t, x±(t0)) ⌘ 0

t ⇡ t0

https://github.com/dpeschka/thinfilm-freeboundary.git (about 120 lines MATLAB proof-of-concept 1D code) 
P. Thin-film free boundary problems for partial wetting. J. Comp. Phys. (2015)
P. Numerics of contact line motion for thin films, IFAC PapersOnline (2015)

|h
x

(t, x±)| = tan ✓

ẋ± = lim
x!x±

⇣
m

h

⇡

x

⌘

mailto:peschka@wias-berlin.de
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2. weak formulation (discrete in space using linear FEM)

1. original PDE

ḣ�r · (|h|nr⇡) = 0

⇡ =
�E

�h

Z

!
(ḣ�+ |h|nr⇡ ·r�) = 0

Z

!
(⇡ � ⌧rḣ ·r =

Z

!
rh ·r �

Z

@!
 @⌫h

mailto:peschka@wias-berlin.de
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4. deformation problem

3. pull-back and ALE formulation

H(t, x) = h(t, y), where y =  t(x)

Ḣ(t, x) = ḣ(t, y) +  ̇t(x) ·ryh(t, y)

Use harmonic

˙

 with boundary data:

normal part of mapping

˙

 · ⌫:

0 =

˙

h(t, y) +

˙

 t(x) ·ryh(t, y)

tangential part of mapping (1� ⌫⌫

>
)

˙

 :

) Deformed meshes are more uniform.

mailto:peschka@wias-berlin.de
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Evolution towards equilibrium
h(x) =

⇣
h̄

�
1� |x�x̄|2

R

2

�⌘

+

mailto:peschka@wias-berlin.de
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Podgorski, Flesselles, Limat 
Schwartz et al. 
Eggers/Snoeijer et al.

Gravity driven motion Ẽ(h) = E(h) +

Z
⇢gh(↵h+ �x) dx

mailto:peschka@wias-berlin.de
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Kondic, Diez. Phys. Fluids (2004)

Energetic patterning
V (h) =

Z

!
�(x, y) dxs

mailto:peschka@wias-berlin.de
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Thin-Film Approximation– Thin films

⌦1(t) = {(x, z) : 0 < z < h1(t, x)}
⌦2(t) = {(x, z) : h1(t, x) < z < h1 + h(t, x)}

Modelling and applications of bilayer flows · Dirk Peschka · Page 16 (24)

mailto:peschka@wias-berlin.de


/  41www.wias-berlin.de · Providence · March 20-25, 2017 · peschka@wias-berlin.de

Outlook

31

Figure: composed AFM images of liquid polystyrene dewetting on top from an liquid 
polymethyl methacrylate substrate (R. Seemann, Univ. d. Saarlandes, Saarbrücken, Germany)
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@th�r · (M(h)r⇡) = 0 in !(t)

@th1 �r · (m(h1)r⇡1) = 0 in ⌦ \ !(t)

with h = (h1, h) and ⇡ = (⇡1,⇡) with ⇡1 = �E/�h1, ⇡ = �E/�h.

M(h) =

✓
1
3h

3
1

1
2hh

2
1

1
2hh

2
1

µ
3h

3 + h1h2

◆
m(h1) =

h3
1

3

Is also unknown

!(t) = {x 2 Rd�1 : h(t, x) = 0}

1

2

Miksis and Kriegsmann, SIAM J. Appl. Math. (2003) 
Pototsky, Bestehorn, Merkt, Thiele, Phys. Rev. E (2004)

mailto:peschka@wias-berlin.de
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Figure 2: Sketch of geometry

Since early works of Rayleigh, Helmholtz and Korteweg it is known that viscous flows minimize
the dissipation of energy [18]. For given initial domains ⌦1,⌦2 the key ingredients to construct
the PDE formulation from a variational principle are the energy

E( 

t

) :=

3
X

j=1

Z

 t(�j(0))

�
j

d� . (3)

where �
j

specifies the amount of energy carried by �
j

(t) per unit area. The dissipation D is
defined as the energy per time to change a state with velocity u and for Newtonian liquids it is
given by

D =

2
X

`=1

µ
`

4

Z

⌦`(t)

(ru+ru>
)

2 d⌦ . (4)

Solutions of the Stokes flow  
t

satisfy the variational principle

d

dt

 

t

= argminu

�

1
2D(u,u) + hdi↵E( 

t

),u i� , (5)

which is formally equivalent to writing @
t

 

t

= �r
D

E( 

t

). The variational principle requires
the calculation of

hdi↵E,vi = �
3
X

j=1

�
j

 

(d� 1)

Z

�j

n · v d�� v · n�j
�

�

�

x�,x+

!

(6)

which is evaluated at t = 0 where 
t

= id⌦. The necessary condition for (5) is that D(u,v) =
�hdi↵E( 

t

),vi for all admissible test-velocities v. Using integration by parts and ⌧
`

= µ
`

(ru+
ru>

) gives

�
2
X

`=1

Z

⌦`

�r · ⌧
`

�

v d⌦+

Z

[�j
v · ([[⌧ ]]n� (d� 1)�

j

n) d�

+

X

j

v · �
j

n�j

�

�

�

{x±,h(t,x±)}
= 0 (7)

6

ḣ+ ẋ± ·rh = 0

[[ḣ1 + ẋ± ·rh]] = 0

s = {(h, h1, x�, x+ : 0 < x� < x+ < L; 0  h, h1; ...}

u = {(ḣ, ḣ1, ẋ�, ẋ+ : ...}

m =

✓Z
h dx,

Z
h1 dx

◆
state

velocity

Karapetsas, Craster, Matar, Phys. Fluids (2011) 
Huth, Jachalski, Kitavtsev, P. Gradient flow perspective on thin-film bilayer flows. J. Engr. Math. (2014)

mailto:peschka@wias-berlin.de


/  41www.wias-berlin.de · Providence · March 20-25, 2017 · peschka@wias-berlin.de

Flow over liquid substrates

34

energetics D,E constraints C

are conserved m1(t) = M1 and m2(t) = M2. These conditions formally define a manifold

M =

n

{h1, h, x�, x+} : {x : h(x) > 0} = (x�, x+), 0 < x� < x+ < L,

m1(t) = M1, m2(t) = M
o

so that a solution is a curve s(t) := {h1(t, ·), h(t, ·), x�(t), x+(t)} 2 M. Provided that
s(t) = {h1(t, �), h(t, �), x�(t), x+(t)} is differentiable in time and sufficiently smooth in
space one immediately derives the condition

d

dt
h
�

t, x±(t)
�

= 0

from h
�

t, x±(t)
�

= 0. Then this implies that changes ˙h and ẋ± are not independent but related
by

˙h(t, x�) + ẋ� ·rh(t, x�) = 0,

˙h(t, x+) + ẋ+ ·rh(t, x+) = 0,
(9a)

where we used the notation ˙h(t, x) := @
t

h(t, x) and ẋ± := dx±/dt. Furthermore

lim

"&0

d

dt
h1

�

t, x�(t) + "
�

= lim

"%0

d

dt
h1

�

t, x�(t) + "
�

lim

"&0

d

dt
h1

�

t, x+(t) + "
�

= lim

"%0

d

dt
h1

�

t, x+(t) + "
�

which again implies

[[

˙h1 + ẋ� ·rh1]]x� = 0

[[

˙h1 + ẋ+ ·rh1]]x+ = 0

(9b)

with the notation [[g]]
x± = lim

x%x± g(x) � lim

x&x± g(x) to express the jump of a quantity
across x±.

The tangent space TsM is characterized by velocities ˙s = { ˙h1, ˙h, ẋ�, ẋ+} of curves s(t) in
M. Note that even on this entirely formal level that M is not a linear space. If for s,˜s 2 M the
corresponding x±, x̃± are different, then h and ˜h have different supports and thereby h+

˜h is
meaningless. We define formally a metric ds : TsM⇥ TsM ! R as follows. First define the
auxiliary pressures ⇡1, ⇡2 2 H1

(!) as weak solutions of
Z

!

˙h1�1 + (Q11r⇡1 +Q12r⇡2)r�1 dx = 0, (10a)
Z

!2

˙h�+ (Q21r⇡1 +Q22r⇡2)r� dx = 0, (10b)

considered with a symmetric matrix for h1, h > 0

Q
ij

=

1

µ

✓

1
3h

3
1

1
2h

2
1h

1
2h

2
1h

µ

3h
3
+ h1h2

◆

.

8

ḣ+ ẋ± ·rh = 0 [[ḣ1 + ẋ± ·rh]] = 0

Figure 2: Sketch of geometry

Since early works of Rayleigh, Helmholtz and Korteweg it is known that viscous flows minimize
the dissipation of energy [18]. For given initial domains ⌦1,⌦2 the key ingredients to construct
the PDE formulation from a variational principle are the energy

E( 

t

) :=

3
X

j=1

Z

 t(�j(0))

�
j

d� . (3)

where �
j

specifies the amount of energy carried by �
j

(t) per unit area. The dissipation D is
defined as the energy per time to change a state with velocity u and for Newtonian liquids it is
given by

D =

2
X

`=1

µ
`

4

Z

⌦`(t)

(ru+ru>
)

2 d⌦ . (4)

Solutions of the Stokes flow  
t

satisfy the variational principle

d

dt

 

t

= argminu

�

1
2D(u,u) + hdi↵E( 

t

),u i� , (5)

which is formally equivalent to writing @
t

 

t

= �r
D

E( 

t

). The variational principle requires
the calculation of

hdi↵E,vi = �
3
X

j=1

�
j

 

(d� 1)

Z

�j

n · v d�� v · n�j
�

�

�

x�,x+

!

(6)

which is evaluated at t = 0 where 
t

= id⌦. The necessary condition for (5) is that D(u,v) =
�hdi↵E( 

t

),vi for all admissible test-velocities v. Using integration by parts and ⌧
`

= µ
`

(ru+
ru>

) gives

�
2
X

`=1

Z

⌦`

�r · ⌧
`

�

v d⌦+

Z

[�j
v · ([[⌧ ]]n� (d� 1)�

j

n) d�

+

X

j

v · �
j

n�j

�

�

�

{x±,h(t,x±)}
= 0 (7)

6

E(h, h1) =

Z
�

2
|rh1|2 +

1

2
|r(h1 + h)|2dx+ �|x+ � x�|

D =
2X

i,j=1

Z
Qijr⇡i ·r⇡jd

minimization problem via Langrange multiplier
D(u, v) + hv, C>�i = �hdi↵E, vi

hq, Cui = 0
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should rather do is define an extension of the velocities ẋ± onto the domain !, e.g. by setting

˙⇠(x) :=

8

>

>

<

>

>

:

ẋ�
x

x�
x 2 !1

ẋ�

⇣

1� x�x�
x+�x�

⌘

+ ẋ+

⇣

x�x�
x+�x�

⌘

x 2 !2

ẋ+

⇣

1� L�x

L�x+

⌘

x 2 !3

(21)

with the obvious properties ˙⇠(0) = ˙⇠(L) = 0, ˙⇠(x±) = ẋ±. The mapping ⇠(x) is equidistant
in each !

i

, i.e. @
x

⇠ = C
i

> 0 in each !
i

as long as we have 0 < x�(t) < x+(t) < L.
If the corresponding flow map is ⇠

t

(x) := x +

R

t

0
˙⇠(x) dt then one can easily see that with

H(t, x) = h
�

t, ⇠
t

(x)
�

we have

˙h(t, x) + ˙⇠(x) ·rh(t, x) = ˙H(t, x)

˙h1(t, x) + ˙⇠(x) ·rh1(t, x) = ˙H1(t, x)

where ˙H has zero boundary conditions and ˙H1 is continuous at x±. Now we can update the
Lagrangian coordinates via

⇠
t+⌧

(x) = x+ ⌧ ˙⇠(x), (22a)

H(t+ ⌧, x) = h(t, x) + ⌧ ˙H(t, x), (22b)

H1(t+ ⌧, x) = h1(t, x) + ⌧ ˙H1(t, x). (22c)

so that h(t + ⌧, ⇠
t+⌧

(x)) := H(t + ⌧, x) and h1(t + ⌧, ⇠
t+⌧

(x)) := H1(t + ⌧, x). This is
the final step of the numerical algorithm. Using the map ⇠ guarantees that solutions never leave
the manifold. We check the robustness of the algorithm with respect to temporal and spatial
discretization for one example.

Example 3.1. Consider the initial data on ! = [0, 8] with x�(0) = 3 and x+(0) = 5

h1(0, x) = 1, h(0, x) = (1� |4� x|)+
with ⌧ = 1/n

t

and �x = |!
i

|/n
x

in each !
i

. As parameters for this example we choose

�1 = 1, �2 = 1, �(x) =

(

1 x 2 !2

0 else
.

The corresponding solution h1, h are shown in figure 4. Each domain is discretized separately,
e.g. for !1 we have 0 = x1 < ... < x

Np = x� with corresponding standard finite element
space. Figure 4 shows the dependence of the solution at t = 1. Note that the initial data is not
smooth at x = 4, still solutions with different n

t

roughly agree even for n
t

= 1. For n
t

! 1
we see typical convergence for a first order method. It seems that at t ! 0 there is some loss
of volume m1,m2 which might be due to the fact the initial data do not satisfy the equilibrium
conditions [[e + b]] = 0, [[c]] = 0. Similarly the method is quite robust when using coarse
meshes with as few as N

p

= 5 points for each interval !
i

. This is particularly interesting for
applications of the numerical algorithm in d = 3.
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minimization problem via Langrange multiplier
D(u, v) + hv, C>�i = �hdi↵E, vi

hq, Cui = 0
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Thin film flows as free boundary problem, where the support set 

is unknown and depends on time.

!(t) = {x 2 Rd : h(t, x) > 0}

• contact angles naturally in variation formulation 
• analysis established (even more natural) 
• lack of practical algorithms (so-far) 
• extension to bilayer flows works, comparison promising

Outlook: 

Summary:

• higher order algorithms (isoparametric FEM, w. Luca Heltai based on deal.II) 
• modeling of contact line physics and better control of contact  

line motion to better control effects such as contact line hysteresis 
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h(t, x) Ḣ = @tH(t, x)ḣ = @th(t, y)

H(t+ ⌧, x) = H(t, x) + ⌧Ḣ(t, x)

 (t+ ⌧, x) =  (t, x) + ⌧ ̇(t, x)
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Free Boundary Problem– Helmholtz1869-Rayleigh1873 Dissipation Principle

Dissipation: D

D(u,v) =

Z

⌦

1
2⌧ : (rv +rv>) d⌦+

Z

�s

�

�1u · v d�

=

Z

⌦

(�r · ⌧) · v d⌦+

Z

�

(⌧n) · v d�+

Z

�s

�

�1u · v d�

where ⌧ = µ(ru+ru>).

Energy: di↵E

di↵ E[v] =
X

f

�f

Z

�f

rkid : rkv

= �
X

f

�f

 
(d� 1)

Z

�f

n · v �
Z

@�f

v · n�

!

Minimization: D + di↵E = 0

�
X

↵

Z

⌦↵

(r · ⌧) · v +
X

f

Z

�f

v · �[[⌧ ]] · n� (d� 1)�fn
�

+

Z

�0

(t · ⌧n+ �

�1u · t)(t · v) d�+
X

f

�f

Z

@�f

v · n�f = 0

Thin film free boundary problems – modeling of contact line dynamics with gradient formulations ·
Dirk Peschka · Page 11 (24)
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Effect of mobility on droplet shape
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m(h) = |h|3+�
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Regularization vs free boundary problem
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Plateau-Rayleigh instability with cubic mobility
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Motivation
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„A free boundary problem is a (nonlinear) PDE,  
whose domain is part of the unknowns“

• flows with free surfaces and interfaces (e.g. this talk: dewetting fronts & droplets) 

• geometric evolution (mean curvature flow) 

• multi-phase problems with phase transitions (Stefan problem) 

• fluid-structure interaction, obstacle problems 

• …

Examples for free boundary problems:

mailto:peschka@wias-berlin.de


/  41www.wias-berlin.de · Providence · March 20-25, 2017 · peschka@wias-berlin.de

Algorithm
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Regularity of source type solutions 

h(t, x) = t�
1

n+4H(⇠), ⇠ = xt�
1

n+4

y = ⇠ + 1H(y) = A�⌫/3y⌫(1 + v(y, y�)),

⌫ =
3

n
, A = ⌫(⌫ � 1)(2� ⌫), � =

p
�3⌫2 + 12⌫ � 8� 3⌫ + 4

2

Regularity near the boundary of the support is an issue!

|h
x

(t, x±)| = tan ✓

ẋ± = lim
x!x±

⇣
m

h

⇡

x

⌘

m(h) = |h|n, n 2
�
3
2 , 3

�

Gnann, Otto Giacomelli. Eur. J. Appl. Math. (2013) 
Bernis et al. …. 
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